نگاشت های حافظ جفت عملگرهای با حاصلضرب تصویر

thesis
abstract

فرض کنیم b(h) جبر عملگرهای کراندار روی فضای هیلبرت مختلط h با dim h > 1 باشد.ثابت می کنیم نگاشت پوشای ? روی b(h) حافظ تصویر ضرب ناصفر است اگر و فقط اگر یک عملگر یکانی یا پادیکانی u روی h و ثابت c با شرط c^2 = 1 موجود باشند که برای هر a عضو b(h) داشته باشیم ?(a) = cu^*au. نتیجه مشابهی برای نگاشت هایی که ضرب سه تایی جردن را حفظ می کنند بدست می آوریم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نگاشت های حافظ عملگرهای رتبه یک و نگاشت های حافظ تعامد

توصیف و دسته بندی نگاشت های پوشای خطی بین جبرهای استاندارد عملگرها که حافظ تعامد برد/دامنه باشند.

نگاشت های تقریباً حافظ طیف

فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...

یادداشتی بر نگاشت های جمعی حافظ طیف روی c*- جبرها

متیو و رادی [14] ثابت کرده­اند که اگر  ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb  از نوع i با فضای ایده­آل هاسدورف و کلاً ناهمبند باشد، آنگاه  جردن ایزومورفیزم است. در این یادداشت نشان می­دهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.

full text

معکوس مور-پنروز حاصلضرب و تفاضل عملگرهای تصویر در یک?c-جبر

در این پایان نامه معکوس مور -پنروز حاصلضرب و تفاضل عملگرهای تصویری در*cجبرها را بررسی می کنیم و همچنین نشان می دهیم برای دو عملگر تصویری p و q در یک *cجبر pq -qp معکوس پذیر مور -پنروز است اگر و فقط اگر pq و p-q معکوس پذیر مور -پنروز باشند

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023