نگاشت های حافظ جفت عملگرهای با حاصلضرب تصویر
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
- author مریم امیری سام
- adviser شیرین حجازیان حمیدرضا ابراهیمی ویشکی
- Number of pages: First 15 pages
- publication year 1391
abstract
فرض کنیم b(h) جبر عملگرهای کراندار روی فضای هیلبرت مختلط h با dim h > 1 باشد.ثابت می کنیم نگاشت پوشای ? روی b(h) حافظ تصویر ضرب ناصفر است اگر و فقط اگر یک عملگر یکانی یا پادیکانی u روی h و ثابت c با شرط c^2 = 1 موجود باشند که برای هر a عضو b(h) داشته باشیم ?(a) = cu^*au. نتیجه مشابهی برای نگاشت هایی که ضرب سه تایی جردن را حفظ می کنند بدست می آوریم.
similar resources
نگاشت های حافظ عملگرهای رتبه یک و نگاشت های حافظ تعامد
توصیف و دسته بندی نگاشت های پوشای خطی بین جبرهای استاندارد عملگرها که حافظ تعامد برد/دامنه باشند.
نگاشت های تقریباً حافظ طیف
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
یادداشتی بر نگاشت های جمعی حافظ طیف روی c*- جبرها
متیو و رادی [14] ثابت کردهاند که اگر ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb از نوع i با فضای ایدهآل هاسدورف و کلاً ناهمبند باشد، آنگاه جردن ایزومورفیزم است. در این یادداشت نشان میدهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.
full textمعکوس مور-پنروز حاصلضرب و تفاضل عملگرهای تصویر در یک?c-جبر
در این پایان نامه معکوس مور -پنروز حاصلضرب و تفاضل عملگرهای تصویری در*cجبرها را بررسی می کنیم و همچنین نشان می دهیم برای دو عملگر تصویری p و q در یک *cجبر pq -qp معکوس پذیر مور -پنروز است اگر و فقط اگر pq و p-q معکوس پذیر مور -پنروز باشند
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023